Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Multifunctional nanosurfaces receive growing attention due to their versatile properties. Capillary force lithography (CFL) has emerged as a simple and economical method for fabricating these surfaces. In recent works, the authors proposed to leverage the evolution strategies (ES) to modify nanosurface characteristics with CFL to achieve specific functionalities such as frictional, optical, and bactericidal properties. For artificial intelligence (AI)-driven inverse design, earlier research integrates basic multiphysics principles such as dynamic viscosity, air diffusivity, surface tension, and electric potential with backward deep learning (DL) on the framework of ES. As a successful alternative to reinforcement learning, ES performed well for the AI-driven inverse design. However, the computational limitations of ES pose a critical technical challenge to achieving fast and efficient design. This paper addresses the challenges by proposing a parallel-computing-based ES (named parallel ES). The parallel ES demonstrated the desired speed and scalability, accelerating the AI-driven inverse design of multifunctional nanopatterned surfaces. Detailed parallel ES algorithms and cost models are presented, showing its potential as a promising tool for advancing AI-driven nanomanufacturing.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract Nature finds ways to realize multi-functional surfaces by modulating nano-scale patterns on their surfaces, enjoying transparent, bactericidal, and/or anti-fogging features. Therein height distributions of nanopatterns play a key role. Recent advancements in nanotechnologies can reach that ability via chemical, mechanical, or optical fabrications. However, they require laborious complex procedures, prohibiting fast mass manufacturing. This paper presents a computational framework to help design multi-functional nano patterns by light. The framework behaves as a surrogate model for the inverse design of nano distributions. The framework’s hybrid (i.e., human and artificial) intelligence-based approach helps learn plausible rules of multi-physics processes behind the UV-controlled nano patterning and enriches training data sets. Then the framework’s inverse machine learning (ML) model can describe the required UV doses for the target heights of liquid in nano templates. Thereby, the framework can realize multiple functionalities including the desired nano-scale color, frictions, and bactericidal properties. Feasibility test results demonstrate the promising capability of the framework to realize the desired height distributions that can potentially enable multi-functional nano-scale surface properties. This computational framework will serve as a multi-physics surrogate model to help accelerate fast fabrications of nanopatterns with light and ML.more » « less
-
The scientific community has been looking for novel approaches to develop nanostructures inspired by nature. However, due to the complicated processes involved, controlling the height of these nanostructures is challenging. Nanoscale capillary force lithography (CFL) is one way to use a photopolymer and alter its properties by exposing it to ultraviolet radiation. Nonetheless, the working mechanism of CFL is not fully understood due to a lack of enough information and first principles. One of these obscure behaviors is the sudden jump phenomenon—the sudden change in the height of the photopolymer depending on the UV exposure time and height of nano-grating (based on experimental data). This paper uses known physical principles alongside artificial intelligence to uncover the unknown physical principles responsible for the sudden jump phenomenon. The results showed promising results in identifying air diffusivity, dynamic viscosity, surface tension, and electric potential as the previously unknown physical principles that collectively explain the sudden jump phenomenon.more » « less
-
Machine learning (ML) advancements hinge upon data - the vital ingredient for training. Statistically-curing the missing data is called imputation, and there are many imputation theories and tools. Butthey often require difficult statistical and/or discipline-specific assumptions, lacking general tools capable of curing large data. Fractional hot deck imputation (FHDI) can cure data by filling nonresponses with observed values (thus, hot-deck) without resorting to assumptions. The review paper summarizes how FHDI evolves to ultra dataoriented parallel version (UP-FHDI).Here, ultra data have concurrently large instances (bign) and high dimensionality (big-p). The evolution is made possible with specialized parallelism and fast variance estimation technique. Validations with scientific and engineering data confirm that UP-FHDI can cure ultra data(p >10,000& n > 1M), and the cured data sets can improve the prediction accuracy of subsequent ML. The evolved FHDI will help promote reliable ML with cured big data.more » « less
-
Nanolenses are gaining importance in nanotechnology, but their challenging fabrication is thwarting their wider adoption. Of particular challenge is facile control of the lens’ curvature. In this work, we demonstrate a new nanoimprinting technique capable of realizing polymeric nanolenses in which the nanolens’ curvature is optically controlled by the ultraviolet (UV) dose at the pre-curing step. Our results reveal a regime in which the nanolens’ height changes linearly with the UV dose. Computational modeling further uncovers that the polymer undergoes highly nonlinear dynamics during the UV-controlled nanoimprinting process. Both the technique and the process model will greatly advance nanoscale science and manufacturing technology.more » « less
An official website of the United States government
